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A note on some nonlinear water-wave experiments 
and the comparison of data with theory 
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The problem of the instability of a uniform, nonlinear, deep-water wave train to 
infinitesimal long-wave perturbations, first studied by Benjamin & Feir (1967) and 
Benjamin (1967)) is re-examined. It is found that the apparent discrepancy between 
the experimental and theoretical growth rates of the instability is associated with the 
experimental generation of waves which do not have the Stokes wave profiles assumed 
in the theory. Experimental and theoretical results relating the initial wave steepness 
and the most unstable long-wave perturbation are used to obtain a correction factor, 
which is found to account for the mismatch in wave forms and which resolves the 
discrepancy in growth rates. The results illustrate that, when theory is compared with 
experiments in which the values of certain higher-order (nonlinear) quantities must be 
deduced from measurements of first-order quantities, great care must be taken to 
ascertain that the experimental conditions and the theoretical assumptions are indeed 
compatible to the required order. 

1. Introduction 
An analysis was presented by Benjamin & Feir (1967) which showed that a weakly 

nonlinear, uniform, deep-water wave train (a Stokes wave train) is unstable to modula- 
tional perturbations of the envelope (corresponding to a pair of side bands around the 
primary component in the power spectrum). In  a following paper by Benjamin (1967)) 
some experimental evidence on the instability was published and the theory was 
qualitatively verified. However, quantitative comparison between theory and experi- 
ment indicated that the theory overpredicted the exponential growth rate by roughly 
a factor of two. In  the discussion, Benjamin suggested that the neglect of dissipative 
effects in the theory may account for up to one-third of the difference, but the bulk of 
the discrepancy was left unexplained. 

Since then much theoretical effort has been devoted to the search for a uniformly 
valid equation which can describe the evolution of a nonlinear wave train. The non- 
linear Schrodinger equation, first derived by Zakharov (1968) and found to predict 
well the long-time behaviour of nonlinear wave packets (Yuen & Lake 1975)) appears 
to be the appropriate choice. In  fact, it was shown that the results of Benjamin & Feir 
(1967) are in quantitative agreement with those obtained from a stability analysis of 
its uniform solution. However, before we can apply the equation to obtain any 
quantitative information pertaining to the long-time evolution of the nonlinear 
wave train, it is necessary that the discrepancy between experimental and theoretical 
initial growth rates be understood and resolved. 
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The purpose of this note is to demonstrate that the discrepancy is not a result of 
errors in the analysis or experiment, but rather is caused by a subtle mismatch of 
theoretical and experimental conditions that may arise when a second-order quantity 
(such as the parameter ka when used as a measure of the degree of nonlinearity in this 
system) must be deduced from measurements of first-order quantities (such as the 
wave amplitude and frequency). 

2. Theory and experiment 
Consider a uniform, steady, weakly nonlinear, deep-water wave train with amplitude 

a, wavenumber k and frequency w (in radians). Correct to O(k2a2),  the free-surface 
elevation ~ ( x ,  t )  can be expressed as an expansion in the first two harmonics: 

(1)  ~ ( x ,  t )  = a cos (kx  - w t )  -i- a2 cos 2 ( k z  - w t ) ,  

where a2 is the amplitude of the second harmonic. Stokes (1847) found that one of the 
conditions for such a steady wave to exist is for a2 to satisfy 

a2 = *ka2. ( 2 )  

Benjamin & Feir (1967) examined the stability of the wave form given by (1)  to side- 
band disturbances of the form 

~ ( x ,  t )  = e+ entcos [k( 1 + K )  x- w(  1 + 6 )  t ]  + E- entcos [k( 1 - K )  x - w (  1 - 6 )  t ] ,  (3) 

where K and 6 are small perturbations in the wavenumber and frequency. The per- 
turbed free-surface elevation ~ ( z ,  t )  + ~ ( x ,  t )  then corresponds to a nearly uniform 
wave train with a weak amplitude modulation. Benjamin & Feir found that, for a 
given value of the wave steepness ka of the initial wave train, there exists a range of 
frequencies centred around the primary frequency w for which Cl is real and positive, 
so that the disturbances grow exponentially with time. More precisely, they found 

(4) 
that 

Q = @(2k2a2-S2)tw, 

SO that Cl is real whenever 0 < 6 < 2tka, and the growth rate is maximum for a given 
ka  when 6 = S,,, = ka. 

It should be pointed out a t  this stage, however, that in obtaining (4) the Stokes 
condition ( 2 )  on a2 is assumed to be satisfied. 

These results can be applied to an experimental situation in which a nearly uniform, 
weakly nonlinear wave is generated mechanically by a wave paddle a t  one end of a tank 
and allowed to propagate down the tank, with measurements of the wave character- 
istics made a t  various fixed locations, provided that we transform the theoretical co- 
ordinates (x, t )  into the laboratory co-ordinates (3,  f) by the transformation 

where C, = w/2k is the leading-order group velocity. The temporal instability can then 
be transformed to a spatial one, and the corresponding spatial growth rate (in 2) 
becomes 

Qz = 6(2k2a2 - a2)& k .  

This transformation, which was used by Benjamin & Feir (1967), Benjamin (1967) and 
Chu & Mei (1970, 1971) for comparing theory with experiment, will be used by us 

(6) 
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throughout this note. It has been checked that the leading-order value of wf2k for the 
group velocity is sufficiently accurate for the present purposes. 

We have performed experiments in a 3 x 3 x 40 ft  water-wave tank with a pro- 
grammable wave maker a t  one end and a wave-absorbing beach a t  the other. The 
wave maker has a frequency response of 1-5 Hz and an amplitude response of 0.01-2 in. 
The measurements were made with capacitance wave gauges a t  six locations in the 
tank: a t  5 ft,  10 ft, 15 ft, 20 ft,  25 f t  and 30 f t  from the wave paddle. The sensitivity 
of the wave gauges was typically 3 Vlin. over a 2 in. range. 

The growth rate of the unstable side bands was deduced from the ratio of the energy 
contained in each side band to that in the primary as obtained from power spectra of 
measurements made a t  each tank location. The taking of the ratio removes the first- 
order effect of dissipation, since the dissipation rates for the side bands and the primary 
should be nearly identical owing to the small frequency separations between them. 
There is also a second-order effect caused by dissipation: the weakening of the overall 
nonlinearity of the system as a. result of energy depletion. However, it is expected that 
for the range of initial side-band growth in which we are interested this second-order 
effect can be safely neglected. 

The three parameters governing the experiments are 6, ka and e+ Among these, eh 
is of least importance, for its value does not affect the growth rate. I ts  only importance 
is to  distinguish whether we are studying the case of natural side bands (ef z 0 except 
for background noise) or experimentally imposed side bands (e* > 0, usually of the 
order of 1 yo of a in our experiments). The remaining two parameters define two types of 
experiment : 

(I) Fix ka, vary 6 (including the case e& N 0). 

(11) Fix 6, vary ka (e* > 0). 

It should be noted that under condition I the growth rate attains a maximum a t  
6 = &ma, and becomes zero when 6 > 2*ka, while under condition I1 the growth rate 
starts to  become non-zero for ka > 6/24 and increases monotonically as ka increases. 

To compare quantitatively the experimental results with the theory, one must 
relate the parameters 6 and ka to experimentally measured quantities. The value of 6 
can be simply obtained with accuracy from the separation of the side bands from the 
primary in the power spectrum, and verified by comparison with the inverse of the 
modulational time period obtained from the measured wave forms. I n  cases of natural 
side-band growth (e* N 0), only one pair of side bands, the most unstable pair, emerges 
from the background noise perturbations to dominate wave-train evolution. I n  other 
cases, where imposed side bands are present, either the imposed pair of side bands or 
the most unstable pair of side bands, or both, can be found depending on the values of 
e* and 6. 

Theoretically, the value of ka should be the steepness of the waves a t  t = 0; or in the 
laboratory co-ordinates, a t  5 = 0 (right off the paddle). This is usually obtained by 
measuring the frequency f (in Hz) and amplitude a a t  a station reasonably close to the 
paddle and setting 

where g is the acceleration due to gravity. I n  our case, this initial measurement is 
taken a t  5 ft,  a location which is sufficiently far (several wavelengths) from the paddle 
that transient disturbances associated with the paddle motion can be considered 

(ka)meas = (an)' g-l(f2a)meas, (7)  
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negligible, yet is close enough to the paddle that dissipation and the side-band in- 
stability have not had a significant effect. However, by letting ka in the theory take the 
value (ka)me,s defined by ( 7 )  a t  the 5 ft station (which we denote as we find 
that all our experimental data agree with those of Benjamin (1967), and hence suffer 
from the same discrepancy when compared with theory. 

As we have noted earlier, the validity of the theoretical expressions for the growth 
rate given in (4) and (6) relies heavily on the assumption that the waves under con- 
sideration are true nonlinear Stokes waves satisfying (2). This assumption, however, 
was found to be invalid for our paddle-generated waves. The reason for this is that the 
wave paddle generates each wave by means of a sinusoidal motion of a given fre- 
quency and amplitude. Therefore, while the generated waves may possess a large 
amplitude, they lack the second harmonic necessary to qualify them as true nonlinear 
Stokes waves. As they leave the wave paddle, these waves presumably tend to adjust 
to the Stokes profile. Inspection of power spectra of wave amplitude measurements, 
however, indicates that the magnitudes of a2 obtained from the spectra are smaller 
than the magnitudes of &ka2 calculated from the measured frequencies and amplitudes, 
and that the wave forms still do not satisfy the Stokes condition (2) as far down the 
tank as 10 ft, at  which point the Benjamin-Feir instability has often taken effect. The 
sampled values of the ratio a,lQka2 show considerabIe scatter but are consistently less 
than unity, indicating that the generated waves are not Stokes waves and that they 
are in some sense ' less nonlinear ' than wave-gauge measurements of their frequencies 
and amplitudes would indicate. The use of (La),,, (or ka measured a t  any location 
reasonably near the wave paddle) for ka in the theory would therefore lead to an over- 
prediction of nonlinear effects and an overprediction of the side-band growth rates, 
which are extremely sensitive to ka. 

We remark here that it is not practical to search for a proper location for the initial 
measurement in the hope that the correct value for ka would be obtained, since the 
waves usually experience the Benjamin & Feir instability before they have adjusted 
to the Stokes profile. In  fact, the value of (ka)meas obtained from measurements of 
frequency and amplitude within 10 f t  from the wave paddle is remarkably insensitive 
to changes in probe location. This is to be expected, since the frequency and amplitude 
are both first-order quantities and should remain relatively unchanged (the amount of 
energy redistributed to the second and higher harmonics, although important, is 
small in magnitude). Our problem arises from having to deduce the value of a second- 
order quantity characterizing the nonlinearity, such as ka (or a2), from the measure- 
ments of first-order quantities, f and a;  when the theoretical assumptions regarding 
wave shape [in this case the Stokes condition (2)] are not satisfied by the experimental 
conditions, the deduced value is in error even though the measurements are accurate. 

What is required is to establish a relationship between the experimental values of 
(ka)meas and the value of ka which correctly characterizes the nonlinearity of the 
generated wave train. To do this we resort to the theory. Recall that, for cases where no 
prescribed side bands are present initially (Q N O),  only the pair of most unstable side 
bands dominates wave-train evolution. The theoretically predicted value of 6 for this 

6 = S,,, = ka. pair of side bands is simply 

We now propose that this result holds for our experiments, and that the value of 
measured can be used to obtain the characteristic kaneeded for comparison with theory. 

(8 )  
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FIGURE 1. Normalized frequency separation 6 of dominant side-band components (no imposed 
initial modulations) as function of the wave steepness (ka),,, measured a t  z = 6 ft and the 
effective initial wave steepness [ka),. B, present results, 2.0 < fo < 3.3 Hz; 0, Benjamin & 
Feir; - , least-squares straight-line fit to the data. The double horizontal scale relates (ka),,, 
and (ka) , ;  (ka) ,  = 0.78(ka),,,. 

In  order that this proposed scheme for determining ka should be correct and useful, 

(i) It should be somewhat less than (ka)meas. 
(ii) It should bear a simple relation to (ka)meas at tl fixed location. 
(iii) It should predict well the growth rate of modulations measured in other, inde- 

pendent experiments, including experiments in which side bands are imposed at  
frequency separations for which 6 # 6 m a x .  

(iv) It should lead to good agreement between theory and experiment for the long- 
time evolution of the wave trains. 

A series of experiments to determine b’m,,, and hence ha, has been performed for a 
wide range of frequencies and amplitudes. The results are shown in figure 1. One can 
immediately see that properties (i) and (ii) are well satisfied. A least-squares fit through 
the data points yields the relation 

the value of ka so obtained should possess the following properties. 

ka( = amax) = 0 * 7 8 ( k ~ ) , , ~ .  (9) 

When this formula is used in experiments with imposed side bands (of both type I and 
type 11, which includes conditions for which # a m a x )  to convert (ka )meas  to k a ,  
comparison of theory and experiment shows quantitative agreement (figure 2), and 
does not exhibit the discrepancy in the modulation growth rate which would arise if 
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FIGURE 2. Comparison of measured and predicted side-band growth rates d(ln S)/dE for 6 = 0.1 
and 6 = 0.2 as functions of ka. Here i? is the normalized propagation distance in units of wave- 
length: 5 = kx/2n. Experimental results: 0, S = 0.2,  Lake et al. (1977); @, S = 0.1, Lake et al. 
(1977) ; A, Benjamin (1967), referred to our (ka),. 

ka were set equal to (ka)meas. The last property, concerning long-time evolution, has 
been verified also and is discussed in Lake et al. (1977). 

The foregoing argument is believed to be sufficiently general to apply to any experi- 
mental study of nonlinear waves where the wave paddle undergoes sinusoidal dis- 
placements which produce waves having the intended frequency and amplitude but 
which cannot produce the intended detailed wave shapes. The numerical value of the 
correction factor, 0.78, may vary somewhat but, in view of the insensitivity of the value 
(ka)mea,s to changes in measurement locations, it is not expected to vary by much. 
In  fact, when we apply this correction to Benjamin’s (1967) data, the discrepancy 
between his data and the predictions of the theory is almost completely removed.? 

3. Conclusion 
In  this note we have shown that, when surface waves of finite amplitude are gen- 

erated by sinusoidal wave-paddle motions of prescribed amplitude and frequency, the 
waves that are produced do not have true Stokes wave profiles for they lack suitable 

t Benjamin (1967, p. 72) stated that in one measurement he found that a,, = 0.15 while 
(ka)meas = 0.17. This would give a numerical factor of 0.88. Although larger than 0.78, this value 
appears to lie within the range of scatter of the data shown in figure 1, so that the taking of 0.78 
as the best fit is not inconsistent. 
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second-harmonic components. Such waves are therefore ‘less nonlinear ’ in some sense 
than a measurement of their amplitudes and frequencies would indicate, and a correc- 
tion factor must be introduced to compensate for the resulting overestimate of the 
nonlinearity of the waves when experimental results are compared with theoretical 
predictions. When a proper correction is made, the comparison between experimental 
data (including those of Benjamin 1967) and the stability analysis of Benjamin & Feir 
( 1967) shows good quantitative agreement. Since the nonlinear Schrodinger equation 
reproduces the results of Benjamin & Feir for the initial stage of nonlinear wave-train 
evolution, removal of the discrepancy in the side-band growth rate allows us to go on to 
investigate the application of the nonlinear Schrodinger equation to the quantitative 
description of the long-time evolution. The results of such an investigation are reported 
in Lake et al. (1977). 

From an experimentalist’s point of view, this note may have a more general implica- 
tion. With the increasing interest in nonlinear phenomena, it is likely that situations 
similar to those discussed here may arise. It is our hope that this particular case can 
serve as an example to illustrate that, whenever the values of certain second-order 
quantities (such as a.Ja a ka as a measure of nonlinearity in our case) must be deduced 
from measurements of first-order quantities (f and a) ,  great care must be taken to 
ascertain that the experimental conditions and the theoretical assumptions are indeed 
compatible. 
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